People who care.

anandic MEDICAL SYSTEMS

- FB Novartis Spirometrie im Praxisalltag
- SVA Sektion Aargau
- **13. Oktober 2020**

EasyOneAir / EasyOnPC Spirometer

Wer bin ich?

- Joerg Egger
- Bei Anandic verantwortlich für Verkauf, Applikation und Produkt-Management Respiratory Care
- Med Tech Branche seit 1984
- 10 Jahre in Südost Asien gelebt/gearbeitet
- 10 Jahre bei einem LuFu Hersteller (NDD)
- Begleite seit bald 20 Jahren Spirometrie Fortbildungen/Seminare

Agenda

- Spirometrie im Praxisalltag
- Ein wenig Theorie Auffrischung
- Praktische Anwendung in der Arztpraxis
- Tipps aus und für die Praxis
- Fragen/Antworten, Diskussion
- Kennen Sie Ihre Spiro Werte?

Wissenswertes rund um die Lunge

- Die menschlichen Lungen sind 26cm hoch und haben einen Durchmesser von 15cm
- Die rechte Lunge verfügt über 3 Lungenlappen und ist somit etwas grösser als die Linke, welche nur über 2 Lungenlappen verfügt
- Zwischen 300-400 Millionen Lungenbläschen (Alveolen) befinden sich in den beiden Lungenflügeln. Diese sind notwendig für die Aufnahme von Sauerstoff und die Abgabe von Kohlendioxid
- Alle Alveolen zusammen umfassen eine Oberfläche von 100-120m2 = ca die Grösse eines Tennisplatzes
- Der Mensch atmet pro Tag etwa 12'000 Liter Luft ein, was der Menge von 75 gefüllten Badewannen entspricht
- Die Atmung erhöht sich bei körperlicher Anstrengung von 15 Atemzügen pro Minute auf 40 bis 60
- Mit der Ausatemluft verliert der Mensch täglich 5 dl Wasser (Kondensat)
- Beim Husten wird die Luft aus den Lungen auf durchschnittlich 480 kmh beschleunigt
- Ein Erwachsener atmet pro Minute 16 Mal ein und aus, ein Jugendlicher 20 Mal und ein Neugeborenes 40 Mal
- Eingeatmete Luft enthält 21% Sauerstoff, ausgeatmete Luft 17%
- Bhutan ist seit 2004 das weltweit erste Nichtraucher-Land

Spirometrie

Spirometrie ist die gängigste Methode zum Messen und Aufzeichnen der Lungenfunktion. Sie misst die *Menge der Luft (Volumen in Liter)*, die ein- und ausgeatmet wird sowie den *Luftfluss beim Ausatmen (Stärke des Atemstroms)*.

Die Spirometrie ist Grundlage für die Diagnose verschiedener Lungen- und Atemwegserkrankungen.

Insbesondere COPD und Asthma bronchiale – beides sind obstruktive Lungenkrankheiten.

Bei obstruktiven Lungenerkrankungen sind die Atemwege verengt.

Die Betroffenen müssen also gegen einen erhöhten Widerstand ausatmen.

Dadurch ist ihre Atmung erschwert.

Tarif 001 - TARMED 1.09, 1.1.2018

Kleine Spirometrie mit Dokumentation der Flussvolumenkurve

TARMED 01.09, 1.1.2018

quant. Dignität	qual. Dignität	Sparte	Anästhesie-Risikoklasse
FMH 5	Alle	UBR Grundversorger	-
AL(inkl. Assistenz)	Assistenz / Dotation	Leistung i. e. Sinne	Bericht
10.23 TP	-1-	5 min.	-
TL	Raumbelegung	Wechsel	Vor- und Nachbereitung
30.75 TP	18 min.	-	-
Geschlecht	Leistungstyp	Skalierungsfaktor AL	Skalierungsfaktor TL

Interpretationen

Drei Messungen vor und drei Messungen nach allf. Bronchodilatation.

Diese Tarifposition ist Bestandteil der Leistungsgruppe LG-03.

Nicht kumulierhar mit

MICHER	aniuner par init
<u>15.0150</u>	Vollständige Spirometrie (Helium)
<u>15.0160</u>	Vollständige Spirometrie und Resistance (Plethysmografie)
<u>15.0180</u>	Spirometrie und FRC-Messung/Plethysmografie beim Kind bis 3 Jahre
15.0270	Bronchoprovokation, unspezifisch (z.B. Metacholin)
<u>15.0280</u>	Bronchoprovokation, spezifisch
<u>15.0290</u>	Test auf Exercise Induced Asthma (EIA)
15.0320	Vollständige Ergospirometrie

Aktuell ist der KVG-Taxpunktwert im Kanton St. Gallen einer der tiefsten in der Schweiz. Er beträgt derzeit 83 Rappen. Zum Vergleich: Im Kanton Waadt beträgt dieser beispielsweise 96 Rappen. Der nationale Durchschnitt liegt bei 89 Rappen.

COPD

Es ist die unterschätzte Volkskrankheit schlechthin, rund 5% der Erwachsenen leiden daran. Das sind über 400 000 Menschen in der CH (weltweit ca 251 Millionen). Die vier harmlos klingenden Buchstaben COPD stehen für den englischen Begriff «Chronic Obstructive Pulmonary Disease».

Die **nicht infektiöse, unheilbare, aber therapierbare Lungenkrankheit** engt die Luftwege mehr und mehr ein und beeinträchtigt die Leistungsfähigkeit des ganzen Körpers.

Raucherlunge nennt man sie im Volksmund, weil in rund 80% der Fälle Rauchen die Ursache ist; dabei zählt auch starker Passivrauch. Die WHO schätzt, dass ab Jahr 2020 COPD nach Herzkreislauf-Krankheiten und Hirnschlag die dritthäufigste Todesursache weltweit sein wird.

COPD Diagnose

Ärztliche Untersuchung

Für eine sichere COPD-Diagnose ist neben der ärztlichen Befragung der Patientin oder des Patienten und der körperlichen Untersuchung ein einfacher Lungenfunktionstest – die sogenannte Spirometrie – unabdingbar, die bereits der Hausarzt/Hausärztin durchführen kann und soll.

Denn Symptome wie Husten mit Auswurf und Atemnot (A-H-A) bei körperlicher Anstrengung können auch auf Asthma hinweisen, das allerdings meist vor dem 40. Altersjahr auftritt.

Asthma

In der Schweiz ist Asthma weit verbreitet.

Dem Asthma liegt ein Infekt der Atemwege zu Grunde.

Gemäss LungenLiga ist jedes **10. Kind** und jeder **14. Erwachsene** davon betroffen.

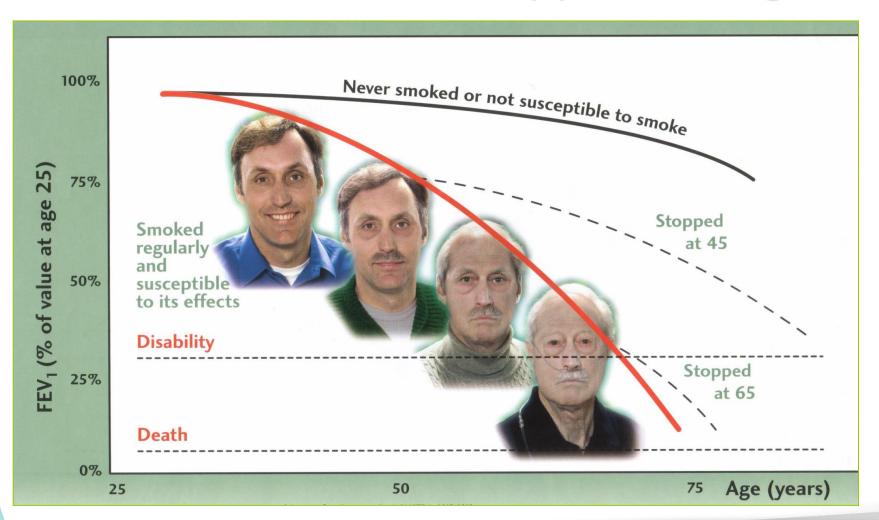
Die meisten Asthma-PatientInnen haben ihre Krankheit erfreulicherweise gut im Griff und können der täglichen Arbeit nachgehen, sich sportlich betätigen (auch Spitzensport zBsp Dario Cologna, Sarah Meier) und reisen.

COPD vs. Asthma

• Obstruktion

- Reversibilität
- CO Diffusion (Gasverteilung)
- Hypoxämie (erniedrigter Sauerstoffgehalt im arteriellen Blut)
- Hyperkapnie (erhöhten Kohlenstoffdioxidgehalt im Blut)
- Symptome
- Nikotin
- Alter
- Atopie (allergische Reaktionen)

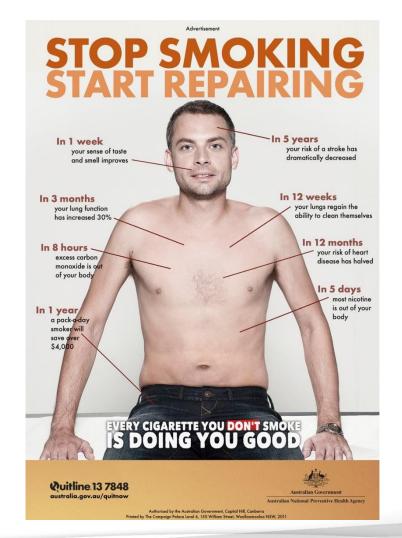
COPD


- Ja
- Bedingt reversibel
- <<<
- Ja
- Ja
- Konstant
- Hauptursache
- · >40
- Nebenursache

Asthma

- Ja
- Reversibel
- >>>
- Teilweise
- Teilweise
- Infekt, Anfallsartig
- Nebenursache
- · <40
- Hauptursache

Fletcherkurve; Rauchstopp Beratung



Rauchstopp Beratung

Ein Rauchstopp lohnt sich

nach 20 Minuten	 Blutdruck und Herzfrequenz normalisiert Körpertemperatur Hände und Füsse steigt
nach 8 Stunden	> Sauerstoffgehalt im Blut normal
nach 24 Stunden	> Gefahr eines Herzinfarktes sinkt
nach 48 Stunden	> Geschmacks- und Geruchssinn verbessert
nach 3 Monaten	> Kreislauf verbessert, Gehen vereinfacht> Lungenfunktion erhöht
nach 6 Monaten) Husten verringert) Müdigkeit und Kurzatmigkeit verringert
nach 1 Jahr	> Risiko einer koronaren Herzkrankheit um 50% reduziert
nach 5 Jahren	Risiko eines Hirnschlages wie beim NichtraucherRisiko von Lungenkrebs halbiert
nach 10 Jahren	> Risiko eines Magengeschwürs verringert
nach 15 Jahren	 Risiko einer koronaren Herzkrankheit wie beim Nichtraucher Allgemeines Sterberisiko wie beim Nichtraucher

Praktische Spirometrie

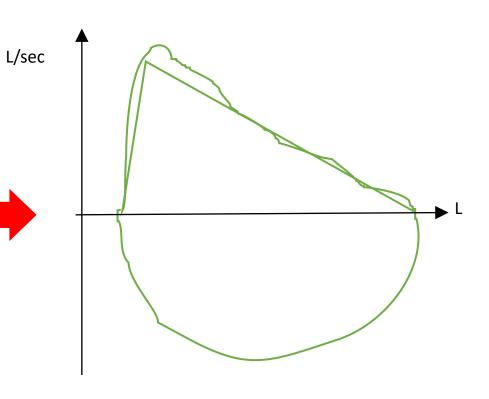
Praktische Spirometrie

Definition der Parameter

Parameter	English	Deutsch
FVC (gemessen)	Forced Vital Capacity	Forcierte exsp. Vitalkapazität, Angabe in Liter
FEV1 (gemessen)	Forced Expiratory Volume (1sec)	Forciertes exsp. Volumen nach 1 Sek, Angabe in Liter
FEV1/FVC (berechnet)		Verhältnis FEV1 zu FVC (Tiffeneau-Wert), Angabe in %
FEV1/VC		Verhältnis FEV1 zu VK
MEF50	Mid Expiratory Flow 50%	Fluss bei 50% der exsp. Vitalkapazität
PEF (gemessen)	Peak Expiratory Flow	Max. exsp. Spitzenfluss, Angabe in L/Sek
VC	Vital Capacity	Vitalkapazität aus langsamer Spirometrie

Testarten

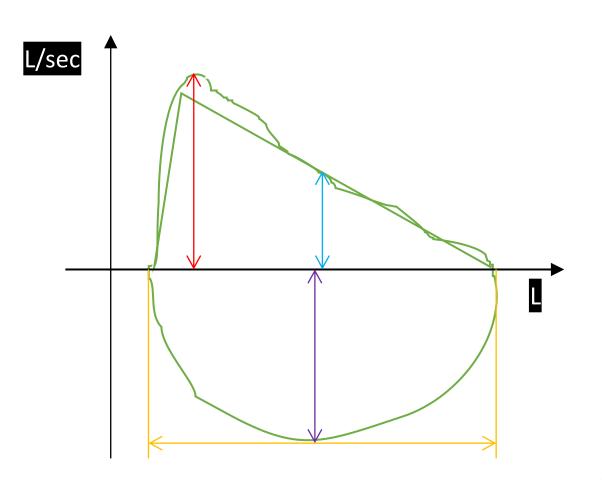
Testauswahl	Beschreibung
FVC	Forcierte exsp. Vitalkapazität; die am häufigsten durchgeführte Form der Spirometriemessung in CH Arztpraxen
FVL	Flow Volume Loop; In- & Exspiration, bei dieser Testart wird im Anschluss an das Ausatemmanöver direkt eine tiefe Einatmung angeschlossen
FVL mit Ruheatmung	Ruheatemzüge vor dem FVL Manöver
SVC	Slow Vital Capacity; Langsame Spirometrie zur Ermittlung der VK
MVV	Max. Ventilationsvolumen pro Min; 12Sek ohne Unterbrechung max. Ein- und Ausatmungen, oft bei Tauch- oder Feuerwehr-Untersuchungen (Atemschutz)
Post-Test	Reversibilitäts-Test nach Bronchodilatation



Volumen-Zeit / Fluss-Volumen Kurve

Pneumologe / Lungenfacharzt

maximale Einatemlage inspiratorisches inspiratorische Vital-≻ kapazität (VK) Atemzugvolukapazität men (AZV, V_T) (Atemruhelage) exspiratorisches Reservefunktionelle kapazität maximale Ausatemlage (FRK)* *spirometrisch


Allgemeinarzt / Grundversorger

Dynamische Lungenvolumina

- PEF
- FVC
- MEF_{50%}
- PIF
- *FEV*₁?

EXspiration

INspiration

Wer soll eine Spiro machen?

Eine Spirometrie empfiehlt sich für Personen, die

- oft husten
- über 45J sind und rauchen (COPD?)
- unter 40J sind (Asthma?)
- Passivrauch ausgesetzt sind
- bei raschem Gehen Atemnot bekommen
- sich um die Gesundheit ihrer Lungen sorgen
- bereits wegen einer Lungenkrankheit in Behandlung sind

Spiro in einen Gesundheits-Check implementieren ...?!

Wo ist Vorsicht geboten?

- Nach kürzlichem Herzinfarkt > 1 Monat warten
- Nach einer Augenoperation > 6 Monate warten
- Nach Pneumothorax > 6 Monate warten
- Bei Schwangeren zBsp im 8.Monat > restriktive Werte
- Lassen Sie Senioren vor der Messung kurz auf die Toilette

Praktische Durchführung

- Genaue Instruktion; Ablauf erklären, Mundstück in Mund, Lippenschluss
- Vormachen/zeigen ist besser als Tausend Worte!
- Ablauf;
 - Sitzend/angelehnt (empfohlen), aufrechte Haltung
 - Nasenklemme
 - Ganz ausatmen; Lunge leeren
 - Maximale Inspiration; tief Luft holen, Luft anhalten
 - Mundstück in den Mund
 - Auf Kommando explosionsartiger & vollständiger Atemstoss ins Spirometer (Kerzen auspusten); PEF, >6 Sek auspusten
 - "best of three", mindestens 2 reproduzierbare (FEV₁, FVC) Messungen, dh mit gleichem Effort durchgeführt
 - Versuch 1 na ja, 2 3 und 4 sollten akzeptabel sein

Sollwerte oder Referenzwerte

- Neueste Sollwerte nach Quanjer GLI (Global Lung Initiative 2012)
- CH Sollwerte (Sapaldia Kohortenstudie mit EasyOne)
- Die bei uns verwendeten Sollwerte sind abhängig von:
 - Alter
 - Grösse
 - Geschlecht
 - Herkunft (Ethnie)

PS; Das Gewicht spielt für die GLI Sollwertberechung keine Rolle

Qualitätsgrade bzgl Reproduzierbarkeit

- **F** = kein akzeptabler Versuch
- **D** = nur ein akzeptabler Versuch oder Ergebnisse nicht reproduzierbar
- C = mindestens zwei akzeptable Versuche und Differenz von FEV1 und FVC </= 200ml
- B = mindestens drei akzeptable Versuche und Differenz von FEV1 und FVC </= 150ml
- A = mindestens drei akzeptable Versuche und Differenz von FEV1 und FVC </= 100ml

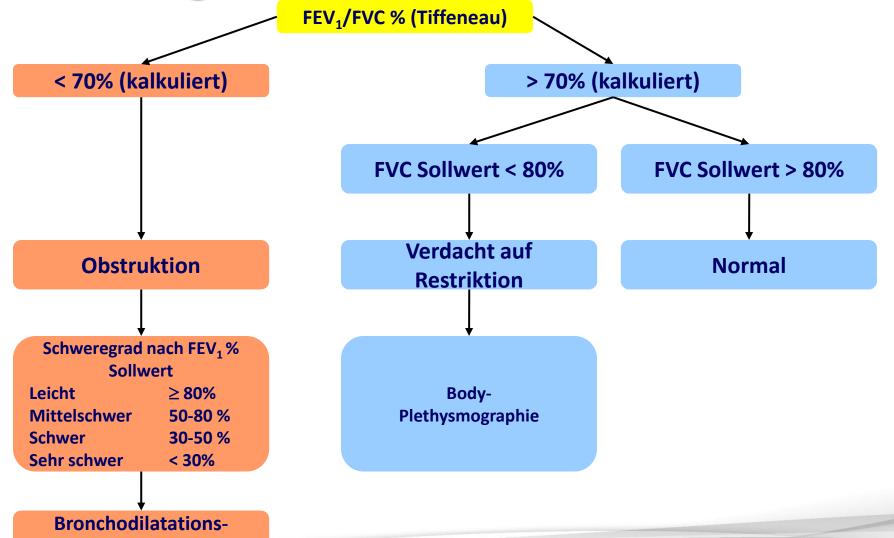
Mögliche Fehlerquellen

- Fehlerhafte Patientendaten-Eingabe; falsch kalkulierte Sollwerte
- MangeInde Kooperation; Sprache, Motivation
- Zunge vor oder im Mundstück
- Ungenügender Lippenschluss
- Leck am Mundstück
- Zögerlicher Ausatmungsbeginn
- Nicht maximale Inspiration; PEF tief, FVC vermindert
- Häufigster Fehler; vorzeitiger Abbruch der Exspiration; falscher Tiffeneau Wert,
 FVC vermindert

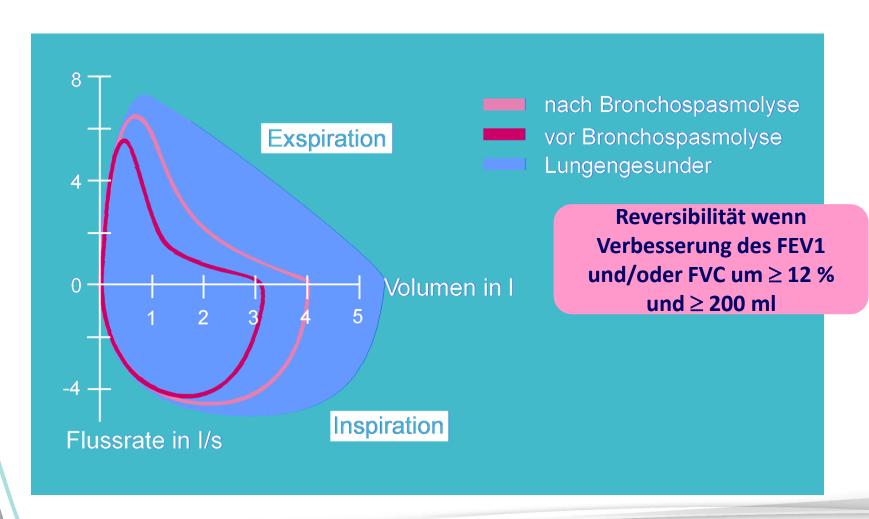
Interpretation der F-V-Kurve

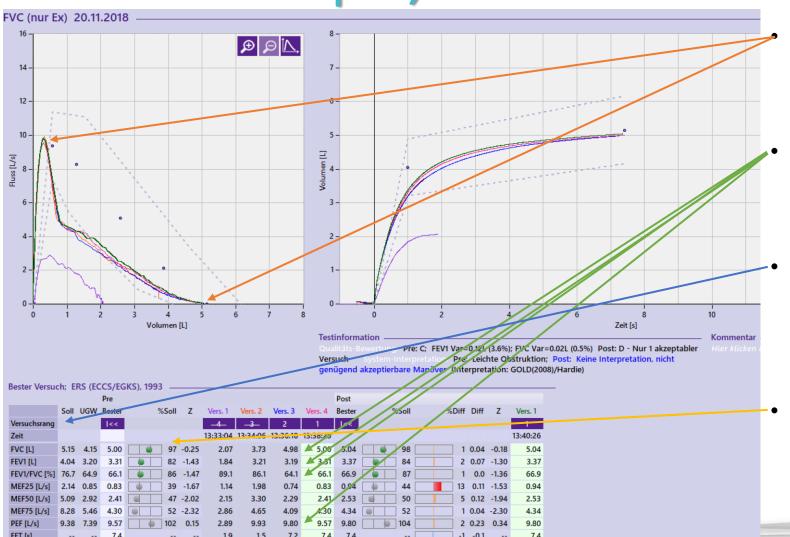
Maßnahme: Patienten bitten, schlagartig so schnell wie möglich auszuatmen kein steiler Anstieg

z.B. Asthma, COPD



Beurteilung der F-V-Kurve


versuch



Bronchodilatationstest

Praktisches Beispiel; FVC Post Messung

Formell richtig gepustete Kurve, dh schneller steiler Anstieg bis PEF, dann ohne Unterbrechung auspusten bis Lunge leer = FVC Immer Ist-Werte des besten Versuches in Zusammenhang mit Kurve begutachten. FVC, FEV1, FEV1/FVC, PEF.

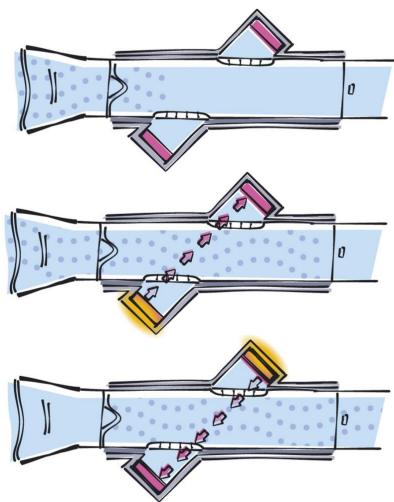
- Sollwerte sind theoretische Werte, errechnet aus Alter, Grösse, Geschlecht und Ethnische Herkunft (sollte, hätte, wäre, wenn)
- %Soll wird nur für Schweregradeinteilung bei einem obstruktiven Befund benötigt

Praktisches Beispiel; FVC Post Messung

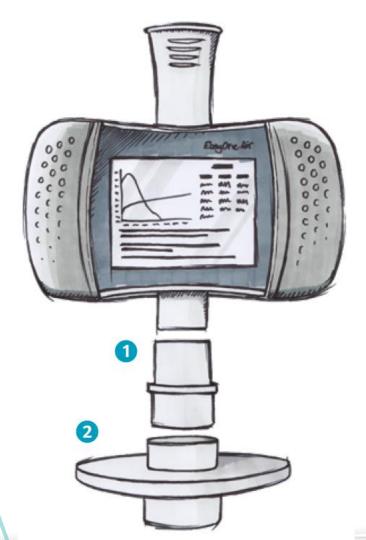
3245 Feuerthalen												
Test, Anandic						10	0: 009	Alte	r: 58 (0	3.07.1	1960)	
Seschlecht	Männlich			Gröss	e	19	1 cm					
thnie	Europäer			Gewi	cht	99	kg	BMI 27	7.1			
VC (nur Ex)						Il·	ır FEV	1 / Soll	: 82%			
estdatum	20.11.2018 1	13:32:45		Interp	pretation	GC	DLD(2008)/Hardie		Wert w	ählen	Bester Versuch
ost-Zeit	20.11.2018 1	13:40:11		Sollw	ert	EF	ts (ECCS/	/EGKS), 199	93	BTPS (I	N/EX)	1.11/1.02
			Pre Bester					Post Bester				
Parameter	Soll	Ugw	Vers. 4	Vers. 3	Vers. 2	%Soll	Z	Vers. 1	%Soll	Z	%Diff	
ïme				13:36:18				13:40:26				
VC [L]	5.15	4.15	5.00	4.98	3.73*	97	-0.25	5.04	98	-0.18	1	
EV1 [L]	4.04	3.20	3.31	3.19*	3.21	82	-1.43	3.37	84	-1.30	2	
EV1/FVC [%] MEF25 [L/s]	76.7 2.14	64.9 0.85	66.1 0.83*	64.1* 0.74*	86.1 1.98	86 39	-1.47 -1.67	66.9 0.94	87 44	-1.36 -1.53	1 13	
MEF25 [L/S] MEF50 [L/S]	5.09	2.92	2.41*	2.29*	3.30	47	-1.67	0.94 2.53*	44 50	-1.53	13	
MEF75 [L/s]	8.28	5.46	4.30*	4.09*	4.65*	52	-2.32	4.34*	52	-2.30	1	
PEF [L/s]	9.38	7.39	9.57	9.80	9.93	102	0.15	9.80	104	0.34	2	
ET [s]		-	7.4	7.2	1.5			7.4	-	-	-1	
	Pre		signifikan C (FEV1	te Post-Ä Var=0.12	L (3.6%); F	VC Var=0	.02L (0.59	%))				
bedeutet: Grenzwert Qualitätsbewertung System-Interpretation		st :	signifikan C (FEV1 D - Nur Leichte	te Post-Ä Var=0.12 1 akzepta Obstruktio	nderung. L (3.6%); F ibler Versu on	VC Var=0 ch		%)) bare Mano	över			

NDD EasyOne Air Spirometer

Bluetooth®



NDD EasyOn PC Spirometer


NDD TrueFlow Technologie

Einzigartige kalibrations- und wartungsfreie Messmethode aufgrund der patentierten ndd TrueFlow Messmethode

anandic MEDICAL SYSTEMS

NDD Inline Filter Lösung

Die neuen Inline-Filterlösungen von ndd bieten jetzt ein zusätzliches Mass an Sicherheit. Diese Lösungen gewährleisten einen zuverlässigen «doppelten Schutz» vor Infektionen: Das einzigartige Spiretten- und FlowTube-Konzept schützt den Flusssensor des Geräts vor Kreuzkontaminationen, und der Filter hält zusätzlich die Umgebung für Personal und Patienten sauber.

Die neuen Inline-Filterlösungen von ndd wurden entwickelt, um die **Testgenauigkeit** zu gewährleisten und gleichzeitig einen umfassenden **Infektionsschutz** zu bieten.

Alle Bestandteile der Geräte, die mit dem Atem des Patienten in Berührung kommen, werden nach jedem Patienten ausgewechselt.

anandic

Schlusswort

joerg.egger@anandic.com

Haben Sie Fragen?